Search Results

Documents authored by Dolev, Danny


Document
Colordag: An Incentive-Compatible Blockchain

Authors: Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
We present Colordag, a blockchain protocol where following the prescribed strategy is, with high probability, a best response as long as all miners have less than 1/2 of the mining power. We prove the correctness of Colordag even if there is an extremely powerful adversary who knows future actions of the scheduler: specifically, when agents will generate blocks and when messages will arrive. The state-of-the-art protocol, Fruitchain, is an ε-Nash equilibrium as long as all miners have less than 1/2 of the mining power. However, there is a simple deviation that guarantees that deviators are never worse off than they would be by following Fruitchain, and can sometimes do better. Thus, agents are motivated to deviate. Colordag implements a solution concept that we call ε-sure Nash equilibrium and does not suffer from this problem. Because it is an ε-sure Nash equilibrium, Colordag is an ε-Nash equilibrium and with probability 1-ε is a best response.

Cite as

Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern. Colordag: An Incentive-Compatible Blockchain. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 1:1-1:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abraham_et_al:LIPIcs.DISC.2023.1,
  author =	{Abraham, Ittai and Dolev, Danny and Eyal, Ittay and Halpern, Joseph Y.},
  title =	{{Colordag: An Incentive-Compatible Blockchain}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{1:1--1:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.1},
  URN =		{urn:nbn:de:0030-drops-191272},
  doi =		{10.4230/LIPIcs.DISC.2023.1},
  annote =	{Keywords: Game theory, incentives, blockchain}
}
Document
Brief Announcement
Brief Announcement: Authenticated Consensus in Synchronous Systems with Mixed Faults

Authors: Ittai Abraham, Danny Dolev, Alon Kagan, and Gilad Stern

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
Protocols solving authenticated consensus in synchronous networks with Byzantine faults have been widely researched and known to exists if and only if n > 2f for f Byzantine faults. Similarly, protocols solving authenticated consensus in partially synchronous networks are known to exist if n > 3f+2k for f Byzantine faults and k crash faults. In this work we fill a natural gap in our knowledge by presenting MixSync, an authenticated consensus protocol in synchronous networks resilient to f Byzantine faults and k crash faults if n > 2f+k. As a basic building block, we first define and then construct a publicly verifiable crusader agreement protocol with the same resilience. The protocol uses a simple double-send round to guarantee non-equivocation, a technique later used in the MixSync protocol. We then discuss how to construct a state machine replication protocol using these ideas, and how they can be used in general to make such protocols resilient to crash faults. Finally, we prove lower bounds showing that n > 2f+k is optimally resilient for consensus and state machine replication protocols.

Cite as

Ittai Abraham, Danny Dolev, Alon Kagan, and Gilad Stern. Brief Announcement: Authenticated Consensus in Synchronous Systems with Mixed Faults. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 38:1-38:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{abraham_et_al:LIPIcs.DISC.2022.38,
  author =	{Abraham, Ittai and Dolev, Danny and Kagan, Alon and Stern, Gilad},
  title =	{{Brief Announcement: Authenticated Consensus in Synchronous Systems with Mixed Faults}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{38:1--38:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.38},
  URN =		{urn:nbn:de:0030-drops-172292},
  doi =		{10.4230/LIPIcs.DISC.2022.38},
  annote =	{Keywords: consensus, state machine replication, mixed faults, synchrony, lower bounds}
}
Document
Time Services (Dagstuhl Seminar 9611)

Authors: Danny Dolev, Rüdiger Reischuk, Fred B. Schneider, and H. Raymond Strong

Published in: Dagstuhl Seminar Reports. Dagstuhl Seminar Reports, Volume 1 (2021)


Abstract

Cite as

Danny Dolev, Rüdiger Reischuk, Fred B. Schneider, and H. Raymond Strong. Time Services (Dagstuhl Seminar 9611). Dagstuhl Seminar Report 138, pp. 1-19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (1996)


Copy BibTex To Clipboard

@TechReport{dolev_et_al:DagSemRep.138,
  author =	{Dolev, Danny and Reischuk, R\"{u}diger and Schneider, Fred B. and Strong, H. Raymond},
  title =	{{Time Services (Dagstuhl Seminar 9611)}},
  pages =	{1--19},
  ISSN =	{1619-0203},
  year =	{1996},
  type = 	{Dagstuhl Seminar Report},
  number =	{138},
  institution =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemRep.138},
  URN =		{urn:nbn:de:0030-drops-150256},
  doi =		{10.4230/DagSemRep.138},
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail